Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(11): 114801, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363005

RESUMO

The properties of photoemission electron sources determine the ultimate performance of a wide class of electron accelerators and photon detectors. To date, all high-efficiency visible-light photocathode materials are either polycrystalline or exhibit intrinsic surface disorder, both of which limit emitted electron beam brightness. In this Letter, we demonstrate the synthesis of epitaxial thin films of Cs_{3}Sb on 3C-SiC (001) using molecular-beam epitaxy. Films as thin as 4 nm have quantum efficiencies exceeding 2% at 532 nm. We also find that epitaxial films have an order of magnitude larger quantum efficiency at 650 nm than comparable polycrystalline films on Si. Additionally, these films permit angle-resolved photoemission spectroscopy measurements of the electronic structure, which are found to be in good agreement with theory. Epitaxial films open the door to dramatic brightness enhancements via increased efficiency near threshold, reduced surface disorder, and the possibility of engineering new photoemission functionality at the level of single atomic layers.

2.
J Chem Phys ; 152(5): 051102, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32035470

RESUMO

In this work, the adsorption height of Ag adatoms on the Fe3O4(001) surface after exposure to CO was determined using normal incidence x-ray standing waves. The Ag adatoms bound to CO (Ag1 CO) are found to be pulled out of the surface to an adsorption height of 1.15 Å ± 0.08 Å, compared to the previously measured height of 0.96 Å ± 0.03 Å for bare Ag adatoms and clusters. Utilizing DFT+vdW+U calculations with the substrate unit cell dimension fixed to the experimental value, the predicted adsorption height for Ag1 CO was 1.16 Å, in remarkably good agreement with the experimental results.

3.
Phys Chem Chem Phys ; 20(24): 16469-16476, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29882949

RESUMO

The normal incidence X-ray standing wave (NIXSW) technique has been used to follow the evolution of the adsorption geometry of Ni adatoms on the Fe3O4(001)-(√2 × âˆš2)R45° surface as a function of temperature. Two primary surface region sites are identified: a bulk-continuation tetrahedral site and a sub-surface octahedral site, the latter site being preferred at higher annealing temperatures. The ease of incorporation is linked to the presence of subsurface cation vacancies in the (√2 × âˆš2)R45° reconstruction and is consistent with the preference for octahedral coordination observed in the spinel compound NiFe2O4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...